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a b s t r a c t

Air pollution can increase the risk of respiratory diseases, enhancing the susceptibility to viral and
bacterial infections. Some studies suggest that small air particles facilitate the spread of viruses and also
of the new coronavirus, besides the direct person-to-person contagion. However, the effects of the
exposure to particulate matter and other contaminants on SARS-CoV-2 has been poorly explored. Here
we examined the possible reasons why the new coronavirus differently impacted on Italian regional and
provincial populations. With the help of artificial intelligence, we studied the importance of air pollution
for mortality and positivity rates of the SARS-CoV-2 outbreak in Italy. We discovered that among several
environmental, health, and socio-economic factors, air pollution and fine particulate matter (PM2.5), as
its main component, resulted as the most important predictors of SARS-CoV-2 effects. We also found that
the emissions from industries, farms, and road traffic - in order of importance - might be responsible for
more than 70% of the deaths associated with SARS-CoV-2 nationwide. Given the major contribution
played by air pollution (much more important than other health and socio-economic factors, as we
discovered), we projected that, with an increase of 5e10% in air pollution, similar future pathogens may
inflate the epidemic toll of Italy by 21e32% additional cases, whose 19e28% more positives and 4e14%
more deaths. Our findings, demonstrating that fine-particulate (PM2.5) pollutant level is the most
important factor to predict SARS-CoV-2 effects that would worsen even with a slight decrease of air
quality, highlight that the imperative of productivity before health and environmental protection is,
indeed, a short-term/small-minded resolution.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

The year 2020 has started with Chinese authorities alerting
WHO that several cases of unusual pneumonia had appeared in the
area of Wuhan (Huang et al., 2020; Wang et al., 2020). In a few
weeks, despite travel restrictions, Italy became the first Western
country with the most serious outbreak of SARS-CoV-2 (Chinazzi
et al., 2020). After six months and millions of people infected
worldwide, Italy still ranks first among European Union’s countries
e by Da Chen.

Cazzolla Gatti).
in the death toll (Dong et al., 2020). During the initial pandemic
wave, Italy has immediately adopted social distancing measures
but it appears clear that the casualties due to this new coronavirus
spread have not affected each Italian region equally (Livingston and
Bucher, 2020).

Although it is well-known the dynamics of epidemics can be
shaped and explained by a combination of several health and socio-
economic factors (Onder et al., 2020), the role played by environ-
mental causes is still poorly explored. Nonetheless, there is
increasing support on the link between severe viral respiratory
disease and air pollution (Chauhan and Johnston, 2003; S�egala
et al., 2008; Guan et al., 2016; Yao et al., 2019; Ogen, 2020). For
instance, a previous study conducted in northern Italy showed the
clinical severity of bronchiolitis in children living in highly polluted
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areas and that PM10 exposure is associated with increased hospi-
talizations for respiratory syncytial virus bronchiolitis among in-
fants in Lombardy, Italy (Carugno et al., 2018). Accordingly, the
geographical distribution of SARS-CoV-2 mortality (Fig. 1A) and air
quality (Fig. 1B) in Italy unveils an alarming pattern. In fact, it seems
no coincidence that the area with the worst air quality and most
severely affected by the new coronavirus in Italy is the Po Valley.
The death toll of regions such as Lombardy, Emilia-Romagna,
Piedmont, and Veneto almost reaches 80% of the total national
deaths (Fig. S1). Big cities in the Po Valley regions show an
increased fatality rate between 150 and 250% (ISTAT, 2020). The
heavy anthropic activity in this area, known as the “Industrial
Fig. 1. The geographical distribution of air pollution (AQI) and the role of health, environmen
of Northern Italian regions are much higher than in the Southern regions. (B) The situatio
representation, Air Quality Index (AQI) is used as a proxy of pollution (where high values mea
SMR actual values and the Random Forests predictions (R2 ¼ 0.95), which follows a positiv
ranking as the most important one. (D) Also when individually analysed (colours of points an
Bonferroni correction) and positive correlation with SMR (R2 ¼ 0.54). (For interpretation of t
this article.)
Triangle”, deriving from a high density of factories, vehicular traffic,
and intensive farming and agriculture (Ciccarelli and Fenoaltea,
2013), produces significant emissions of air pollutants. These
cannot easily dissolve because air recycling is reduced by the spe-
cific topography (a plain surrounded by the Alps) and climatic
conditions (high humidity and weak winds) that trap fine partic-
ulates (Bigi et al., 2012).

Several authors suggested that COVID lockdown measures
reduced anthropogenic impacts inmany areas of theworld (Dutheil
et al., 2020; Cazzolla Gatti, 2020; Muhammad et al., 2020; Gautam,
2020; Bherwani et al., 2020; Sharma et al., 2020). However, the
rationale behind our study was motivated by some evidence that
tal, and socio-economic factors on SARS-CoV-2 mortality (SMR) in Italy. (A) SMR values
n is strikingly similar when considering pollution over the Italian Peninsula; for this
n higher pollution). AQI and SMR values are in percent. (C) The agreement between the
e linear trend; in the smaller panel: the importance of the different factors with AQI
d lines as in the in part C’s inset), AQI is the only factor showing a significant (P < 0.05,

he references to colour in this figure legend, the reader is referred to the Web version of
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air pollution plays a role in spreading the viruses, emerged from
previous studies on other epidemics (Ciencewicki and Jaspers,
2007; Wong et al., 2010; Nenna et al., 2017), which was also
advanced for SARS-CoV-2 expanding virulence in specific areas of
Italy (Conticini et al., 2020; Sciomer et al., 2020). Research con-
ducted in Beijing showed that small-size particulate (PM2.5) in the
air directly influences the transmission of influenza virus (Liang
et al., 2014). In fact, fine particulate matter remains suspended
longer in the air than heavier particles and its fine size facilitates
virus suspension, their long-range diffusion, and the deep pene-
tration into the bronchi of the lungs (Brugha and Grigg, 2014). In
people chronically exposed to air pollution, this may induce chronic
inflammation of the respiratory airways, which leads to excessive
mucus production and decreased ciliary activity facilitating the
development of severe respiratory diseases after viral infections
(Xing et al., 2016). However, very few studies have evaluated the
effects of prolonged exposure to air pollution on SARS-CoV-2019
susceptibility.

As far as we know, our study is the first one addressing this
problem within a quantitative framework which allows the eval-
uation of the statistical association between pollution and SARS-
CoV-2 effects.

Preliminary hypotheses advanced in the USA (Wu et al., 2020)
and in Italy (Fattorini and Regoli, 2020), suggested that long-term
exposure to air pollution and, particularly, fine particles may be
linked to the COVID-19 death rate. Although a vivid debate has
involved the scientific community, a systematic evaluation of the
association between SARS-CoV-2 infectivity and air pollution fac-
tors is still lacking. Some authors highlighted that these pre-
liminary studies had to be interpreted as more hypothesis-
generating rather than confirmatory and called for future
research to clarify the role of air pollution and the other factors,
which may have mutually contributed to the diffusion of SARS-
CoV-2 (Fattorini and Regoli, 2020). Moreover, these early studies
linearly investigated the association between the pandemics and
individually-taken factors.

Here we examined the possible reasons why the new corona-
virus differently impacted on Italian regional and provincial pop-
ulations with the help of artificial intelligence through a
multivariate approach, trying to incorporate the effects of several
factors and their interactions in a comprehensive non-linear model.
Using standardized mortality and infectivity rates and including
other important determinants such as age, lifestyle, and socio-
economic factors, this works provides the first attempt to quanti-
tative and more comprehensive modelling of SARS-CoV-2
pandemics.

With a machine learning algorithm, we were able to assess the
association of pollution and environmental factors with the SARS-
CoV-2 diffusion in Italy. In particular, we studied the importance
of prolonged exposure to air pollution for mortality and positivity
rates. We included in our analysis other factors potentially linked to
the pandemics, such as the number of smokers, the level of obesity
and overweight, the mean annual income per family, the number of
public hospital beds, and the number of viral tests performed. Then,
we determined the specific contribution of different components
and sources of air pollution to the pandemics diffusion and severity.
Finally, we projected the effects of a decrease in air quality over
future pandemics.

2. Materials and methods

2.1. Data collection and standardization

Epidemiological data on positivity and mortality at the regional
scale (20 Italian regions out of 21 total, excluding Sardinia for which
air quality measurements were not available), and total cases at
provincial scale (99 Italian provinces out of 107, excluding 5 from
Sardinia and 3 - Fermo, Imperia, and Ragusa - from which air
quality datawere not available) were collected from the Italian Civil
Protection’s data repository (https://github.com/pcm-dpc/COVID-
19/tree/master/dati-regionii) and (https://github.com/pcm-dpc/
COVID-19/tree/master/dati-province).

In this study, we used the term “positivity” for the total number
of people tested positive on SARS-CoV-2 swabs updated at June 06,
2020, in each Italian region; “mortality” for the number of people
dead because of SARS-CoV-2 updated at June 06, 2020, in each
Italian region; and “total cases” for the total number of SARS-CoV-2
cases, which is the sum of dead people, tested positive, and
recovered, updated at June 06, 2020, in each Italian province.

We collected the last 5-year (2015e2019) Air Quality Index (AQI)
from data provided by http://moniqa.dii.unipi.it/, which allowed us
to synthetically represent the state of air quality at provincial and
regional scales considering at the same time the data of several
atmospheric pollutants. This index represents a unitless indicator
of immediate reading. The calculation of the index is performed by
dividing the measurement of the pollutant, by its reference limit,
established by the Italian Legislative Decree 155/2010. Moreover,
we collected the last 5-years (2015e2019) time series of the con-
centration of 7 principal air pollutants (namely PM2.5, PM10, NO2,
SO2, CO, Benzene and O3) from the measurements of the Regional
Environmental Protection Agency (ARPA) of each province and re-
gion considered in this study for a total of 7720 singular entries.

We indicated as “Overweight” the percentages of subjects by
Italian region in excess weight (overweight þ obese subjects)
calculated from 2015 to 2018 provided by https://www.epicentro.
iss.it/passi/dati/sovrappeso. By overweight subjects, we mean
people with body mass index (BMI) between 25 and 29.9. While
subjects with BMI �30 are considered obese.

We indicated as “Smokers” the percentage of smokers in each
Italian region calculated from 2015 to 2018 extracted from https://
www.epicentro.iss.it/passi/dati/fumo. Smokers are the subjects
who have smoked 100 or more cigarettes in their life and who
declared that they continue to smoke at the time of the survey.

We indicated as “Hospital beds” the available beds in public
hospitals, per regional population, in 2017. Data were collected
from (Italian Ministry of Health, 2019).

The most recent available data on the main sources of air
pollution were collected from I.Stat, the warehouse of statistics
currently produced by the Italian National Institute of Statistics
(https://www.istat.it/en/). As variables, we selected:

C as “Farm”, the average regional number of animals per
breeding farm type from 2015 to 2019: caprine, bovine,
equine, swine, ovine, and bufalin;

C as “Industry”, the regional number of factories at the regional
level selected as potential contributors to air pollution in
2017: extraction of minerals and from mines, water and
garbage management, energy supply, transport and storage,
and construction;

C as “Agriculture”, the regional surface covered in hectares by
all crops in 2019;

C as “Firewood”, the regional consumption of biomass (in
tonnes) per heating purposes (firewood and pellets) in 2017;

C as “Cars”, the regional number of circulating vehicles in 2018.

Data on the total regional number of “Incinerators” in 2017 were
collected from (ISPRA, Rapporto Rifiuti Urbani, 2017) and data on
the regional number of “Airports” were collected from (ENAC,
Aeroporti Certificati, 2019).

Data for “Traffic” were collected from (ACI, Annuario statistico,

https://github.com/pcm-dpc/COVID-19/tree/master/dati-regioni
https://github.com/pcm-dpc/COVID-19/tree/master/dati-regioni
https://github.com/pcm-dpc/COVID-19/tree/master/dati-province
https://github.com/pcm-dpc/COVID-19/tree/master/dati-province
http://moniqa.dii.unipi.it/
https://www.epicentro.iss.it/passi/dati/sovrappeso
https://www.epicentro.iss.it/passi/dati/sovrappeso
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2019) as the average regional quantity of fuel (gasoline and regular
in tonnes) sold annually from 2005 to 2018.

All data were standardized to the total regional population size.

2.2. Data analysis

All the processing and statistical analyses were performed in R
version 3.6.1 (R Core Team, 2020).

Following a procedure widely used in the literature, to carry out
a statistical comparison between the different resident pop-
ulations, neutralizing the effects deriving from their different age
structures and population size, the data on positivity at the regional
scale (for which age classes were available) were standardized with
the direct method (Curtin and Klein, 1995), while the data on
mortality at the regional scale (for which age classes were not
available) were standardized with the indirect method (Wilcox and
Russell, 1986). The standardization procedure leads to removing the
effect of any age differences between two populations, keeping the
real differences in disease frequency. Both direct and indirect
standardizations involve the calculation of numbers of expected
events (i.e. deaths and the number of positive people in our study),
which are compared to the number of observed events. Standard-
ized ratios were calculated as the ratio between the observed
number of deaths/infected in the study population (regional or
provincial) and the number of deaths/infected would be expected,
based on the age- and sex-specific rates in the standard population
(Italy) and the population size of the study population by the same
age/sex groups.

In the direct method of standardization, age-adjusted rates are
derived by applying the category-specific mortality rates of each
population to a single standard population. This produced age-
standardized positivity ratios (SPR) that Italian regions would
have if they had the same age distribution as the standard popu-
lation (Italy).

The indirect method is based on the ratio between the deaths
observed in a territory and those expected in the same. The ex-
pected deaths were calculated by applying the corresponding
specific mortality ratios of the population assumed as standard (the
national one in this analysis) to the average annual population by
age and sex classes of each territorial unit (regions, in this analysis).
The Standardized Mortality Ratio (SMR), therefore, expresses the
relationship between the deaths observed in a specific territory and
the expected deaths if in the same territory there was the annual
mortality, specific for age groups, of the population used as
standard.

We calculated the mean value of the 5-year (2015e2019) Air
Quality Index (AQI) at the provincial and regional levels by aver-
aging the indexes recorded in each trimester of the 5 years.
Moreover, we calculated themean value of the 5-year time series of
the 7 main pollutants at the provincial and regional scale by aver-
aging the indexes recorded in each year (about 20 measurements,
one per trimester, in each of the 99 provinces).

We used a Machine Learning algorithm based on Artificial In-
telligence as a regressor to predict SMR and SPR and to identify
which variables were important for the prediction model. Random
Forest (RF) (Breiman, 2001) is a bagging technique that exploits the
strength of tree ensemble classifiers. The main modification with
standard tree classifiers is that each tree is grown using a sub-
stantially different set of features, as a consequence the algorithm
prevents each tree from being too correlated to other trees. This
ensures that the learning is not strongly dependent on any single
feature. Our choice is motivated by several considerations: (i) it is
robust as it does not require any particular tuning, in fact, it de-
pends on just two different parameters, which are the number of
trees n and the number of features m sampled to grow each leaf
within a tree; (ii) it estimates variable importance and therefore
provides a straightforward interpretation for themodel; (iii) thanks
to its out-of-bag estimation Random Forest generate an unbiased
estimate of the generalization error. Furthermore, the randomiza-
tion procedure at the base of random forest significantly reduces
the problem of overfitting (Breiman, 1996).

For our analysis, we adopted a default configuration for Random
Forest, with n ¼ 500 trees and m ¼ f/3 with f being the number of
features. As previously mentioned, one of the main advantages of
Random Forest is the possibility to internally assess the importance
of each feature for the model accuracy. We evaluated the feature
importance using the mean decrease impurity. During the training
phase, it is possible to estimate how much each selected feature
decreases the impurity of a tree. In Random Forest, the impurity
decrease from each feature is averaged on all trees to estimate the
importance ranking of variables. The impurity is measured by the
residual sum of squares.

Considering the N trees of our model the prediction for each
element xi of sample X is given by the average of predictions of all N
trees:

byðxiÞ¼ 1
N

XN
j¼1

QjðxiÞ (1)

where Qj indicates a single tree grown by randomly selecting m
variables.

The mean-squared generalization error for each predictor tree
is:

EðY �QðXÞÞ2 (2)

with Y that represents the expected numerical outcome. For ac-
curate Random Forest regression is required a low correlation be-
tween residuals of differing regressor trees and a minimization of
the prediction error function for the individual trees, defined in (2)
(Segal, 2004).

In the present work, we assessed the problem of predicting the
rates of mortality and positivity in 20 Italian regions based on
heterogeneous characterizations. In particular, we built three
Random Forest regression models for each indicator (SMR and
SPR): the first in which we used the 6 environmental, health, and
socio-economic variables as input features, the second was
implemented with information on sources of air pollution, finally,
in the third application we modelled our regressor through con-
centrations of 7 main pollutants. We verified the goodness of our
models employing the root-mean-square error (RMSE) and the co-
efficient of determination (R2). Random Forest was also employed
to project the increase in the SARS-CoV-like estimated mortality
(SMR) and positivity (SPR) with a 5e10% higher AQI (i.e. air pollu-
tion worsening).

A linear regression analysis was performed and a Pearson’s
correlation coefficient was calculated to study the relationship
between the total number of recorded cases at the provincial level
(adjusted by the provincial population size) and the provincial AQI.
The trend line’s equationwas then employed to project the increase
in the SARS-CoV-like estimated cases with a 5e10% higher AQI (i.e.
worsening of air pollution). We also compared the positivity rate of
each province with the value estimated with a simple linear model
where this rate was expressed as a function of the AQI. The differ-
ence between the actual and the expected value is the plotted
residuals.

As a secondary analysis to assess the robustness of our results
gathered with Random Forest, we applied the Canonical Correla-
tion Analysis (CCA) (Hotelling, 1992) to research the best
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correlation between two following sets of data: the first composed
by the 6 environmental, health, and socio-economic variables
(Overweight, Smokers, Hospital beds, Income, AQI and Swabs) and
the second with the SPR and SMR. Our purpose was to evaluate
which of the 6 variables provided the greatest contribution
(weight) in the correlation. Given two independent datasets X and
Y, the CCA identifies the pairs of linear combinations, one of each
dataset, most closely related to each other. In other words, CCA
detects the best correlation that can be obtained between two in-
dependent datasets.

Assuming X and Y, two independent datasets, composed by N
cases with n and m features respectively, the CCA technique allows
to find, for each case, k pairs of canonical variables, being k the
minimum between n andm. Each pair has as a first element a linear
combination of the features of the dataset X and as a second
element a combination of the features of the dataset Y. The k pairs
are ordered in such away that the first pair has a greater correlation
than the second, the second has a greater correlation than the third,
and so on. In addition to the scores, the CCA algorithm returns the
canonical factors (the coefficients to calculate each canonical vari-
able) and the canonical correlations, the k correlations relating to
each pair of canonical variables.

Since one of the two dataset in our study contains only two
variables (SPR and SMR), CCA returns only two pairs of canonical
variable; with the first to be preferred correlation as it yields a
stronger correlation between the linear combination of SPR and
SMR and the linear combination of the six environmental variables.
In addition, to avoid the problems of overfitting related to the small
number of available cases in the model (20 Italian regions), we only
considered all possible pairs by combining the six variables two by
two. We applied the CCA to each of these pairs to estimate the best
correlation existing with SMR and SPR dataset. This analysis con-
firms what has already been achieved by applying the CCA to the
entire dataset. In fact Fig. 2 shows that only the couples with AQI
have a correlation coefficient above 70% respect to SPR and SMR
combination.

3. Results

3.1. Relations between SARS-CoV-2 and health, ecological and
socio-economic factors

First, we analysed the relation between the last 5-year exposure
to air pollution (hereafter Air Quality Index, AQI; see Appendix A for
Supplementary Methods), the number of smokers, the level of
obesity and overweight, the mean annual income per family, the
number of public hospital beds, and the number of SARS-CoV-2
tests performed with the rates of mortality (SMR; see Methods)
and positivity (SPR) in 20 Italian regions. SMR and SPR are stan-
dardized rates that represent the percentage of the increase or
decrease inmortality of a study cohort (regional populations, in this
study) compared to the general population (Italy, in this study). We
adjusted all rates to the national norm to remove the differences in
size and age distribution of the regional populations, which may
represent confounding factors (Naing, 2000). Then, we modelled
how SMR and SPR vary with these factors with a popular super-
vised learning algorithm from Artificial Intelligence (A.I.), which is
Random Forests (see Appendix A for Supplementary Methods). Our
model can explain the SMR (R2 ¼ 0.95 and RMSE ¼ 28.9; Fig. 1C)
and SPR (R2 ¼ 0.93 and RMSE ¼ 20.3; Fig. S2) values with high
accuracy. AQI ranked first in importance among six different factors
and is the only one showing a significant and positive correlation
with SMR (R2 ¼ 0.54; Fig. 1D). This Machine Learning evidence was
also confirmed by a Canonical Correlation Analysis (CCA), which
showed that SMR and SPR have always higher correlations with all
the pairwise combinations of the six variables that include AQI
(Fig. 2).

3.2. Importance of the different sources and components of air
pollution

Because the prolonged exposure to air pollution resulted as the
most important factor to explain the differential mortality and
positivity to the SARS-Cov-2 in Italian regions, we investigated
deeper to determine the relative contribution of main sources of air
pollution. We evaluated the importance for SMR and SPR of 8
principal sectors related to local air pollution such as industry,
farms, agriculture, vehicular traffic, cars, household firewood, air-
ports, and incinerators, which are confirmed sources of air pollu-
tion and emit Particulate Matter (PM), Nitrogen Dioxide (NO2),
Sulphur Dioxide (SO2), Carbon Monoxide (CO), Ozone (O3) pre-
cursors, Benzene, etc. (Holman, 1999). The Random Forest analysis
showed that Industry (28%), followed by Farm (22%) and Road
traffic (19%) were the most relevant air pollution sectors linked to
an increase in mortality rates of the 20 Italian regions (Fig. 3A).
Moreover, road traffic resulted in the most important variable
related to SARS-CoV-2 positivity (Fig. 3C).

Our machine learning analysis also revealed that the exposure
to high levels of PM2.5 (particulate matter that has a diameter
smaller than 2.5 mm) is the most important contaminant to explain
the high mortality and positivity due to the new coronavirus
propagation in the most polluted regions of Italy (Fig. 3B and D)
among other AQI components (namely PM10, O3, SO2, NO2, CO, and
Benzene), which also contributed to highermortality levels in some
regions such as Aosta Valley and Trentino Alto-Adige (Fig. 4).

3.3. Effects of air pollution at a local scale and on future epidemics

Because the impact of the AQI on SARS-CoV-2 infection showed
a strong geographical pattern at a regional level, we zoomed our
analysis in on a smaller provincial scale to better understand the
effect of the prolonged exposure to air pollution (Fig. S3). From a
regression between the total recorded cases in 99 provinces
(adjusted by their population) and the AQI in each of them (Fig. 5A),
we confirmed a positive linear trend (slope ¼ 0.52, r ¼ 0.44).
Interesting additional elements, however, came out. Six provinces
showed to be evident outliers (Fig. 5B): 5 of them (Cremona, Lodi,
Piacenza, Bergamo, and Brescia) with an excess of cases than those
predicted by the AQI in our model and one province (Siracusa) with
a lack of cases than those expected by its highest level of exposure
to air pollution.

Given the major contribution played by air pollution (much
more important than other health and socio-economic factors, as
we discovered from the regional analysis), we estimated the ex-
pected effects of a decrease in air quality on new potential SARS-
CoV-like epidemics. Alarmingly, we estimated that with an over-
all increase between 5% and 10% of air pollution at the national
scale, there would be 21e32% additional cases, whose 19e28%
more positives and 4e14% more deaths, to sum to the future
epidemic tolls of Italy.

4. Discussion

The results of our artificial intelligence model showed the ex-
istence of a strong association between prolonged exposure to air
pollution and SARS-Cov-2 mortality and positivity. In fact, as a
measure of this association, we considered two different metrics
such as R2 and RMSE, and a corollary analysis involving partial
correlations. According to both metrics, it is possible to model
mortality and positivity with great accuracy using pollution data.



Fig. 2. Results of the CCA applied among all pairs of the 6 considered variables and SMR and SPR indexes. For each pair of variables, the below-diagonal cells show the correlation
value for the first pair of canonical components, and the relative scatterplot is symmetrically plotted in the upper part. The highest correlation coefficients in red, Pearson’s r > 0.7,
are obtained for all pairs that include AQI. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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As far as we know, this is the first study to investigate and model
this association with a multivariate model, while so far simple
single variable approaches have been preferred (Wu et al., 2020;
Fattorini and Regoli, 2020). Considering the feature importance, we
were able to assess the contribution of each considered factor and
disentangle the role of those factors showing minor importance.
Surprisingly, none of the health variables such as the number of
swabs, smokers, and overweight people show any significant
(P > 0.05, Bonferroni correction) positive trend with mortality and
positivity rates. The same consideration holds for socio-economic
factors such as family income and healthcare. We think this
finding is particularly intriguing because it may also highlight the
fact that, in Italy, access to the health-care system does not depend
on the socio-economic conditions of patients. Moreover, it can be
considered an indirect validation of our hypotheses about the pri-
mary role played by pollution factors because this shows that air
quality affects all citizens despite their wage or lifestyle.

We then studied the relative contribution of the main sources of
air pollution. We showed that industry and farms were the most
important, among 8 principal sectors, sources of air pollution for
SARS-CoV-2 mortality and that vehicular traffic had a major impact
on positivity. Industry, particularly from metallurgic, gas and oil,
plastic, construction, and chemical factories may severely pollute
the air of the surrounding areas emitting, through smokestacks,
substances such as ParticulateMatter (PM), Nitrogen dioxide (NO2),
Carbon Monoxide (CO), Ozone (O3) precursors, etc. (Wang et al.,
2016; Zhang et al., 2020). Farms, particularly intensive indoor
ones, are considered important emitters of PM precursors created
by secondary reactions in the atmosphere with sulphur dioxide
(SO2), nitrogen oxides (NOx), volatile organic compounds (VOCs)
and ammonia (NH3) (Zhao et al., 2017). Intensive and extensive
agriculture and farms, in fact, generate fumes from nitrogen-rich
fertilizers and animal waste, which mainly contain ammonia and
combine in the air with combustion emissions to form solid small
particles. Road transport is a major source of air pollution and
widely confirmed to harm human health and the environment
(Samet, 2007). Vehicles emit a range of pollutants including NOx,
particulate matter, and O3 precursors. The use of biomass such as
firewood and pellets for domestic heating is recognized as a heavy
threat for air quality because its burning emits black smoke from
smokestacks full of PM, sulphur oxides (SOx), NO2, dioxins, and
furans (Boman et al., 2003). The incineration of waste, besides CO,
SOx, NOx, etc., may release in the atmosphere heavy metals, Poly-
vinyl Chlorides (PVC), dioxins, and furans (Ranzi et al., 2011).
Finally, airports are among the largest sources of air pollution and
contribute to increasing the level of CO, O3, NOx, and PM in the air
surrounding runways (Schlenker and Walker, 2016).

Considering that more than three-quarter of the deaths associ-
ated with SARS-CoV-2 in the first six months of 2020 in Italy was
reported in northern regions, our result that the number of fac-
tories plays a major role in the SARS-CoV-2 deaths connected to air
pollution is not surprising. North-western Italy, which comprises
the first Italian industrial triangle (also called To-Mi-Ge) corre-
sponding to the summits of Turin, Milan, and Genoa, is the area in
which large-scale industrialization of the Italian economy took
place between the end of the 19th century and the beginning of the
20th century (Ciccarelli and Fenoaltea, 2013). Moreover, a report
published in 2019 by the European Environment Agency (European
Environment Agency, Air quality in Europe, 2018) showed that the
Po Valley, i.e. the area between the Alpine chain, the Northern
Apennines and the Adriatic Sea, is the most affected region by the
concentration of air pollutants of the whole Europe.

Among the 7 main components of air pollution, we discovered
that fine particles (PM2.5) played a major role in this pandemic.
This small particulate is primarily produced by the combustion of
fuel in engines in vehicles, the rubbing of brakes and tires, domestic



Fig. 3. Feature importance of air pollution components and its main sources for SARS-CoV-2 mortality and positivity. The feature importance produced by Random Forest model for
the relation of SMR with (A) major sources, which shows that Industry, Farm and Road traffic are - respectively - the most relevant sources of air pollution connected to an increase
in the mortality rates; and with (B) contaminants, which shows that PM2.5 is the most relevant component of air pollution connected to an increase in the mortality rate. The
feature importance produced by Random Forest model for the relation of SPR, at the regional scale, with (C) major sources, which shows that Road traffic and Cars, Industry, and
Farm are the most relevant sources of air pollution and with (D) contaminants, which shows that PM2.5, followed by CO and NO2 are the most important components of air
pollution, connected to an increase in the positivity rates.
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heating, and industrial emissions, including power plants. None-
theless, the fact that we found that farms ranked as the second
main source of air pollution-related to increased SARS-CoV-2
mortality is strong evidence that, together with industry, inten-
sive farming can worsen the pandemic death toll. Major sources of
NH3 include agricultural activities (i.e. animal husbandry and fer-
tilizers) and the regional inventory estimates of Lombardy (ARPA
Lombardy, 2017) and Emilia-Romagna (ARPA Emilia Romagna,
2018) attribute ~95% of ammonia emissions to agricultural activ-
ities out of the annual total. Ammonia reacts with nitric and sulfuric
acids leading to the formation of ammonium nitrate and ammo-
nium sulphate, respectively, the two inorganic salts most present in
the small particles. Therefore, intensive farming heavily contributes
to the formation of secondary particulate matter.

We now have stronger evidence that high exposure to small
particles is related to increased SARS-CoV-2 mortality. However,
other air contaminants must not be underestimated. Our finding
that in some regions with exceeding SARS-CoV-2 mortality there
was prolonged exposure to high levels of other AQI components
supports the idea of a synergistic effect of contaminants. Air
pollution is composed of several pollutants and their complex
interactions may exert even stronger pressure on human health
and have bigger impacts on the environment than expected by
considering the effects of contaminants in isolation. The fact that
road traffic ranks only third in terms of importance as a source of air
pollution shows that it is a contributing, but not the most relevant,
compartment affecting the mortality to viral-induced respiratory
infections, although it emerged as the most important variable
related to SARS-CoV-2 positivity, which couldmean that this source
produces other air pollutants that, affecting the respiratory system,
increased the susceptibility to the new coronavirus.

We recognize that at a smaller scale, besides air quality, addi-
tional and strictly local factors may have played a role in increasing
the number of total SARS-CoV-2 cases in some provinces of Lom-
bardy, which would explain the outliers we found in our regression
at the provincial level. Although correlation does not imply
causation, our findings would recommend significant interventions
to reduce the air pollution deriving from industrial and farming
production activities, home heating and transports to hopefully
weaken the impact of future epidemics.

In contrast, according to our model, a province in Sicily could
become a new outbreak location if measures to limit this new



Fig. 4. The influence of prolonged exposure to all AQI components to SARS-CoV-2 mortality in Italian regions. Boxplots of seven air contaminants (namely PM2.5, PM10, O3,
Benzene, SO2, NO2, and CO) measured in the last-5 years (2015e2019) by the Regional Agencies for Environmental Protection ARPA that contribute to the evaluation of air quality
and show their relation with SARS-CoV-2 mortality (the SMR depicted in a coloured scale of intensity in each box). Boxes are ranked from the highest to the lowest median value
(horizontal line in the box) per each contaminant (in mg/m3) and represent the first and fourth quartiles. Whiskers represent the maximum and minimum values excluding outliers
(dots). The SMR colour scale is the same as in Fig. 1A. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 5. The relation between SARS-CoV-2 total cases and Air Quality Index (AQI) at the provincial scale. (A) Most of the Italian provinces show a positive linear correlation
(slope ¼ 0.52, r ¼ 0.44) between the Air Quality Index (AQI) and the total number of cases (adjusted for the provincial population size). However, some provinces are evident
outliers. Those in the red set (above the trend line) show an excess of cases compared to what predicted by the linear correlation with the AQI. The only outlier in the green set
(below the trend line) shows a lack of cases compared to what predicted by the linear correlation with the AQI. (B) This is also shown in the map of the analysis of residuals (which
are the difference between the observed and predicted cases in each province). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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coronavirus and pathogens with similar respiratory effects are not
well managed.

As far as we know, this is the first study addressing this problem
within a quantitative frameworkwhich allows the evaluation of the
statistical association between pollution and SARS-CoV-2 effects.
Nonetheless, we identified some limitations of our study to
improve future research on the same topic. First of all we recognize
that at a smaller scale, besides air quality, additional and strictly
local factors may have played a role in increasing the number of
total SARS-CoV-2 cases in some provinces of Lombardy and North
Italy; accordingly, the correlation between pollution and epidemic
effects could reasonably include the contribution of other co-
factors. This study is far from being an exhaustive and compre-
hensive examination of all possible factors whichmay contribute to
aggravated viral infections in the human lower respiratory tract;
further studies could address this aspect. Lockdown measures and
travel restrictions preventing the virus diffusion could have played
a relevant role and partially account for regional differences in



R. Cazzolla Gatti et al. / Environmental Pollution 267 (2020) 115471 9
epidemic mortality and severity. Another important aspect to
consider is time exposure, in this study we consider a pollutant
exposure up to 5 years, but it could be interesting to investigate if
and to which extent longer time exposure has a relevant effect on
epidemic severity.

Nonetheless, the use of artificial intelligence to understand the
importance of multiple factors represents an advancement of
classical statistical analysis, which through a machine learning
process sensitively increased the accuracy of our model.

5. Conclusions

Our results showed a strong correlation between SARS-CoV-2
mortality and positivity and the prolonged exposure to air pollu-
tion. We designed and evaluated a multivariate model to investi-
gate how different factors would affect pandemics diffusion and
severity. In particular, we observed that in our model air quality
plays the most relevant role. Interestingly, other factors inherent to
socio-economic conditions and lifestyles showed much less
importance. The model is accurate and paves the way for the pre-
diction of future outcomes: a further worsening of air quality might
lead to even more dramatic consequences in future pandemics. We
also showed stronger evidence that a prolonged exposure partic-
ularly to small particles is strongly related to an enhanced SARS-
CoV-2 mortality. Together with this evidence, it might also be
that the pollutants stagnation, resulting from a combination of
specific climatic conditions, local anthropogenic emissions and
regional topography, may promote a longer permanence of the of
viral particles in the air, thus favouring an indirect diffusion in
addition to the direct one from individual to individual. Further
investigations can shed more light on these dynamics and the role
of small particles in the diffusion of pathogens. However, we
already have quite clear proof that prolonged exposure to air
pollution in Italy, mainly from highly industrialized and intensively
farmed areas and congested roads that produce fine particulate
matter, enhances the risks associated with epidemics. This must be
taken into account in country-based environmental policies on a
global scale because it is highly probable that the relation between
air pollution and SARS-CoV-likemortality we discovered in Italy is a
more common pattern than thought before and may worsen the
effects of pathogens’ spread in other parts of the world.

Overall, our finding that air quality is the most important factor
connected with mortality and positivity of SARS-CoV-like patho-
gens, which would worsen evenwith a slight increase of pollutants,
makes clear that the imperative of productivity before health and
environmental protection is, indeed, a short-term/small-minded
resolution.
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